Exercice 2:

Partie 1: Coût de production

Toutes les courbes de cet exercice seront tracées sur la feuille annexe dans un repère orthogonal d'unité 1 cm pour 10 unités en abscisses et 1 cm pour 100 euros en ordonnées.

Une entreprise fabrique chaque jour un nombre x de calculatrices.

Cette entreprise produit au minimum 10 calculatrices et au maximum 120 calculatrices.

Le coût de production d'une calculatrice est fonction du nombre de calculatrices produites.

la fonction C qui à x associe le coût de production de x calculatrices en euros est donnée par : $C(x) = x^2 - 80x + 2575$.

- a. À l'aide de la calculatrice, dresser le tableau de valeurs de la fonction C pour x ∈ [10;120] avec un pas de 10 unités. Construire, en bleu, la courbe représentative de la fonction C.
 Tracer les lignes de rappel des valeurs 10; 30; 50; 70.
 - **b.** Peut-on avoir un coût égal à 1200 €? Si oui, pour quelle(s) valeur(s) de x?
- 2. a. Démontrer que $C(x) = (x-40)^2 + 975$.
 - **b.** Justifier que le minimum de la fonction *C* est égal 975.
 - c. placer le point correspondant sur le graphique en indiquant ses coordonnées.
 - **d.** Dresser le tableau de variation de la fonction *C* sur l'intervalle [10; 120].

Partie 2 : Recette et bénéfice

Chaque calculatrice est vendue 50 € pièce. La recette est égale au prix de vente de l'ensemble des calculatrices.

- 1. a. Déterminer la formule donnant la recette R(x) obtenue en vendant x calculatrices.
 - **b.** Construire, en noir, la courbe représentative de la fonction *R* sur le même graphique que la fonction précédente.
- 2. On suppose que toutes les calculatrices produites sont vendues.

Pour x calculatrices produites et vendues, on note B(x) le bénéfice de l'entreprise.

- **a.** Démontrer que : $B(x) = -(x 65)^2 + 1650$
- b. À l'aide de la calculatrice, dresser le tableau de valeurs de la fonction B pour x ∈ [10;120] avec un pas de 10 unités. Construire, en rouge, la courbe représentative de la fonction B.
 Tracer les lignes de rappel des valeurs 20, 30, 50, 70, 90, 110.
- **c.** Déterminer graphiquement, les valeurs de x pour lesquelles l'entreprise réalise un bénéfice.
- **d.** Démontrer que la fonction *B* admet un maximum? Pour quelle production *x* de calculatrices est-il atteint?
- **e.** Dresser le tableau de variation de la fonction *B* sur l'intervalle [10; 120].

Exercice 3:

Jean vient d'être embauché par la société THALES qui lui propose le choix entre deux contrats :

- (A): 1500 € par mois avec une augmentation mensuelle de 2% au début de chaque année.
- (B): 1700 € par mois avec une augmentation mensuelle de 10 € au début de chaque année.

Tous les calculs seront arrondis à 1 euro près.

Partie 1: calculs

- 1. Contrat A
 - a. Expliquer pourquoi les salaires des trois premières années sont les suivants : 1500 € , 1530 € , 1561 € .
 - b. Expliquer pourquoi, augmenter un salaire de 2% revient à multiplier celui-ci par 1,02.

Partie 2: algorithme

Jean constate que le salaire du contrat A augmente beaucoup plus rapidement que celui du contrat B. Il se demande au bout de combien d'années le salaire du contrat A dépassera t-il celui du contrat B? Pour cela, il écrit l'algorithme suivant :

Entrées : Le nombre A = 1500

Le nombre B = 1700

Le nombre X = 0

Traitement : Tant que A < B répéter

|Affecter à X la valeur X+1

|Affecter à A la valeur A $\times 1,02$

| Affecter à B la valeur B + 10

| Fin de répétition

Sortie : Afficher X, A et B

1. Faire fonctionner cet algorithme en notant les résultats dans un tableau comme celui indiqué ci-dessous. Recopier les lignes qui sont déjà écrites et rajouter autant de lignes que nécessaire. (On rappelle que tous les calculs seront arrondis à 1 euro près).

	X	A	В
Initial	0	1500	1700
Etape 1	1	1530	1710
Etape 2	•••	•••	•••

- 2. Qu'affiche cet algorithme en sortie?
- 3. Quelle conclusion Jean peut-il en tirer?

Exercice 4: [Feu vert, feu rouge]

Sur le grand boulevard, il y a deux feux tricolores pour permettre aux piétons de traverser. Les deux feux sont réglés de la même façon : à un instant donné, un feu est « au rouge »avec une probabilité de 1/4 et « a l'orange »avec une probabilité de 1/8.

- 1. Quelle est la probabilité qu'à un instant donné, un feu soit « au vert »?
- 2. Un automobiliste emprunte le boulevard, quelles est la probabilité qu'il rencontre les deux feux au vert?
- 3. Le code de la route précise que l'on doit s'arrêter au feu rouge mais aussi au feu orange.
 - **a.** Julie est très prudente, elle respecte le code de la route, quelle est la probabilité qu'elle s'arrête au moins une fois devant l'un de feux?
 - **b.** Fabien conduit dangereusement, il ne s'arrête que lorsque le feu est rouge. quelle est la probabilité qu'il s'arrête au moins une fois devant l'un de feux?

Exercice 5:

Pour préparer ses œuvres en mosaïque, en prévision d'une « invasion »à Los Angeles, l'artiste urbain Space Invader dispose de 1 500 carreaux dont 25 % sont jaunes, les 2/5 sont bleus et les autres sont rouges.

- 1. Certains carreaux sont abîmés : Ils représentent 4 % des jaunes, 5 % des bleus et 4 % des rouges. Compléter le tableau de l'annexe 3. Aucune justification n'est attendue.
- 2. L'artiste prend un carreau au hasard, tous les carreaux ayant la même probabilité d'être choisis. On note les événements de la manière suivante :

R: « le carreau est rouge ». E: « le carreau est en bon état ». J: « le carreau est jaune ».

- a. Calculer les probabilité P(R), P(E) et $P(\overline{J})$
- **3.** Définir par une phrase les événements $R \cap E$ et $R \cup E$, puis calculer leur probabilité.
- **4.** L'artiste a choisi au hasard un carreau non abîmé. Quelle est la probabilité pour que ce carreau, non abîmé, soit rouge?

Annexe 3: Tableau de l'exercice 4

Carreaux	jaune	Bleu	Rouge	Total
Abîmés				
Non Abîmés	• • •		• • •	• • •
Total				1500

Exercice 2:

Partie 1 : Coût de production Une entreprise fabrique chaque jour un nombre *x* de calculatrices.

Cette entreprise produit au minimum 10 calculatrices et au maximum 130 calculatrices.

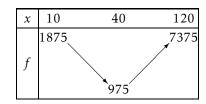
Le coût de production d'une calculatrice est fonction du nombre de calculatrices produites.

la fonction C qui à x associe le coût de production de x calculatrices en euros est donnée par : $C(x) = x^2 - 80x + 2575$.

1. a. Tableau de valeurs :

x	10	20	30	40	50	60	70	80	90	100	110	120
C(x	1875	1375	1075	975	1075	1375	1875	2575	3475	4575	5875	7375

- **b.** Graphiquement, on peut avoir un coût de 1200 € lorsque x = 25 et x = 55. Dans la réalité on tombe parfaitement sur 1200 €.
- 2. **a.** $(x-40)^2 + 975 = x^2 2 \times 40x + 40^2 + 975 = x^2 80x + 2575 = C(x)$.
 - **b.** Comme un carré est toujours positif ou nul, nous avons $(x-40)^2 \ge 0$ donc $C(x) = (x-40)^2 + 975 \ge 975$ et C(40) = 975. Ceci signifie que la fonction C admet un minimum pour x = 40 et que ce minimum est égal à 975.
 - **c.** Tableau de variation de la fonction *C* sur l'intervalle [10; 130].



Partie 2 : Recette et bénéfice

Chaque calculatrice est vendue 50 € pièce. La recette est égale au prix de vente de l'ensemble des calculatrices.

- **1. a.** La recette est égale au prix de vente unitaire multiplié par le nombre de calculatrices vendues : R(x) = 50x.
 - **b.** La courbe représentative de la fonction R est une droite passant par l'origine. Si x = 20 alors R(x) = R(20) = 1000.
- 2. On suppose que toutes les calculatrices produites sont vendues.
 - **a.** Le bénéfice B(x) de l'entreprise est la différence entre la recette R(x) et le coût de production C(x) donc $B(x) = R(x) C(x) = 50x x^2 + 80x 2575 = -x^2 + 130x 2575$. Or $-(x-65)^2 + 1650 = -(x^2 2 \times 65x + 65^2) + 1650 = -x^2 + 130x 4225 + 1650 = -x^2 + 130x 2575$. Nous avons bien $B(x) = -(x-65)^2 + 1650$
 - **b.** À l'aide de la calculatrice, dresser le tableau de valeurs de la fonction B pour $x \in [10;120]$ avec un pas de 10 unités. Construire la courbe représentative de la fonction B.

х	10	20	30	40	50	60	70	80	90	100	110	120
B(x)	-1375	-375	425	1025	1425	1625	1625	1425	1025	425	-375	-1375

- c. Graphiquement, les valeurs de x pour lesquelles l'entreprise réalise un bénéfice sont les valeurs pour lesquelles B(x) > 0 c'est à dire lorsque la courbe est au dessus de l'axe des abscisses donc $x \in]25;105[$.
- **d.** $B(x) = -(x-65)^2 + 1650$: Comme un carré est toujours positif ou nul, $-(x-65)^2 \le 0$ donc $B(x) = -(x-65)^2 + 1650 \le 1650$ et B(65) = 1650. La fonction B admet un maximum égal à 1650 pour x = 65.
- e. Tableau de variation

х	10	65	120
В	-1375´	1650	- 1375

0.1 La courbe

Exercice 3:

Jean vient d'être embauché par la société THALES qui lui propose le choix entre deux contrats :

- (A): 1500 € par mois avec une augmentation mensuelle de 2 % au début de chaque année.
- (B): 1700 € par mois avec une augmentation mensuelle de 10 € au début de chaque année.

Tous les calculs seront arrondis à 1 euro près.

Partie 1: calculs

- 1. Contrat A
 - a. Si le salaire augmente de 2 %, il faut ajouter $1500 \times \frac{2}{100}$ à 1500 la première année. Ce qui donne 1530 au bout d'un an.

On recommence pour la seconde année; on ajoute $1530 \times \frac{2}{100}$ à 1530

Ce qui donne 1561 au bout de 2 ans an.

b. Si nous augmentons une somme S de 2 %, nous lui ajoutons $S \times \frac{2}{100}$.

Le résultat est donc
$$S + S \times \frac{2}{100} = S\left(1 + \frac{2}{100}\right) = S \times 1.02$$

Partie 2: algorithme

1. Fonctionnement de l'algorithme :

À chaque étape :

- Nous ajoutons 1 à X.
- Nous multiplions A par 1.02.
- Nous ajoutons 10 à B.
- Nous arrêtons les calculs dès que la colonne A donne un nombre supérieur à celui de la colonne B.

Initial	0	1500	1700
Etape 1	1	1530	1710
Etape 2	2	1561	1720
Etape 3	3	1592	1730
Etape 4	4	1624	1740
Etape 5	5	1656	1750
Etape 6	6	1689	1760
Etape 7	7	1723	1770
Etape 8	8	1757	1780
Etape 9	9	1792	1790

- 2. En sortie l'algorithme affiche 9 , 1792 et 1790 ce qui signifie qu'au bout de 9 années, le salaire A vient de dépasser le salaire B. Il est égal à 1792 € alors que le salaire B n'est plus que de 1790 €.
- 3. Jean en tire la conclusion que s'il reste moins de 9 ans dans l'entreprise il faut qu'il choisisse la formule B.

Exercice 4: [Feu vert, feu rouge]

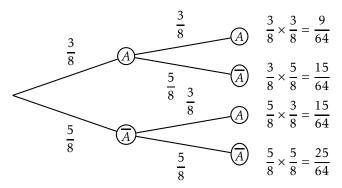
Sur le grand boulevard, il y a deux feux tricolores pour permettre aux piétons de traverser. Les deux feux sont réglés de la même façon : à un instant donné, un feu est « au rouge »avec une probabilité de 1/4 et « a l'orange »avec une probabilité de 1/8.

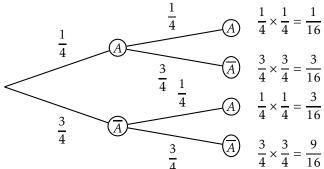
- 1. Le feux est au vert s'il n'est ni rouge, ni orange donc $P(V) = 1 \frac{1}{4} \frac{1}{8} = \frac{8}{8} \frac{2}{8} \frac{1}{8} = \frac{5}{8} = 0,625$
- 2. Un automobiliste emprunte le boulevard, la probabilité qu'il emprunte les deux feux au vert est :

$$\frac{5}{8} \times \frac{5}{8} = \frac{25}{64} = 0,390625$$

- Le code de la route précise que l'on doit s'arrêter au feu rouge mais aussi au feu orange.
 Fabien conduit dangereusement, il ne s'arrête que
- a. Julie est très prudente, elle respecte le code de la route. On note A l'événement « Julie s'arrête au feux » donc $p(A) = \frac{3}{8}$ et $p(\overline{A}) = \frac{5}{8}$
- lorsque le feu est rouge.

On note A l'événement « Fabien s'arrête au feux » donc $p(A) = \frac{1}{4}$ et $p(\overline{A}) = \frac{3}{4}$





La probabilité que Julie s'arrête au moins une fois est : $\frac{9}{64} + \frac{15}{64} + \frac{15}{64} = \frac{39}{64} \approx 0,61$

La probabilité que Fabien s'arrête au moins une fois

$$\frac{\text{est:}}{\frac{1}{16}} + \frac{3}{16} + \frac{3}{16} = \frac{10}{16} = 0,625$$

Exercice 5:

Pour préparer ses œuvres en mosaïque, en prévision d'une « invasion »à Los Angeles, l'artiste urbain Space Invader dispose de 1500 carreaux dont 25 % sont jaunes, les 2/5 sont bleus et les autres sont rouges.

1. Certains carreaux sont abîmés : Ils représentent 4 % des jaunes, 5 % des bleus et 4 % des rouges.

Carreaux	jaune	Bleu	Rouge	Total
Abîmés	15	30	21	66
Non Abîmés	360	570	504	1434
Total	375	600	525	1500

2. L'artiste prend un carreau au hasard, tous les carreaux ayant la même probabilité d'être choisis. On note les événements de la manière suivante :

R: « le carreau est rouge ».

E : « le carreau est en bon état ».

J : « le carreau est jaune ».

3. **a.**
$$P(R) = \frac{525}{1500} = 0.35$$
; $P(E) = \frac{1434}{1500} = 0.956$; $P(\overline{J}) = 1 - P(J) = 0.75$;

$$P(E) = \frac{1434}{1500} = 0.956$$
;

$$P(\overline{J}) = 1 - P(J) = 0.75$$
;

4. Définir par une phrase les événements $R \cap E$ et $R \cup E$, puis calculer leur probabilité.

 $R \cap E$: Représente les carreaux rouges et en bon état : $P(R \cap E) = \frac{504}{1500} = 0.336$;

 $R \cup E$: Représente les carreaux rouges ou en bon état :

$$P(R \cup E) = P(R) + P(E) - P(R \cap E) = 0.35 + 0.956 - 0.336 = 0.97$$
;

5. L'artiste a choisi au hasard un carreau non abîmé. Quelle est la probabilité pour que ce carreau, non abîmé, soit rouge?

Il y a 504 carreaux rouges parmi les non abîmés donc la probabilité est : $\frac{504}{1434} = 0.351$